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A METHOD FOR ESTIMATING THE MECHANICAL PROPERTIES
OF A SOLID MATERIAL SUBJECTED TO INSONIFICATION —
PART I: THEORY

INTRODUCTION

Measurement of the mechanical properties of slab-shaped materials (i.e., plates) is important
because of the significant contributions made by these properties to the static and dynamic

response of a structure under various loading conditions.

Resonant techniques,' used to identify and measure Young’s modulus for many years, have
now been extended to measure the shear modulus of materials.* Such procedures are based on
comparing the measured eigenvalues of a structure to those predicted from a model of the same
structure formulated with well-defined (typically closed-form) eigenvalues. Resonant techniques
allow measurements at resonant frequencies and, in general, utilize long, thin materials so that
the waves propagate only in a longitudinal or torsional direction. The methods have also been

3>Twhich typically use one or more inverted transfer

extended to nonresonant frequencies,
functions of thin-bar data to solve for Young’s modulus. Other research has considered the bulk
modulus of small-sized materials through the insonification of samples and the use of lasers to

measure the resulting strain.®

12 is yet

Comparison of analytical models to measured frequency response functions
another approach used to estimate the stiffness and loss parameters of a structure. When the
analytical model agrees with one or more frequency response functions, the parameters used to
calculate the analytical model are considered to be accurate. However, when the analytical
model is formulated with a numerical method, comparing the model and the data can be
difficult because of the dispersion properties of the materials. Moreover, if a single type of
wave motion is dominant in the experiment, the parameters associated with secondary types of

wave motion are unlikely to be estimated correctly.

Some investigators have concentrated on the stiffness and loss parameters of thin plates, with

one method employing transmission zeros to calculate unknown coefficients at ultrasonic




]

frequencies" and a second using the natural frequencies of the plate to determine the elastic
constants.' In addition, plate parameter estimation has been extended to measure experimental
plate natural frequencies that are matched to a numerical simulation for estimating elastic
constants.”” F inally, studies of plate theory that relate transmission loss and reflection loss (echo
reduction) to transfer functions across the plate have been made,'® although this work does not

contain a parameter estimation technique.

A theoretical inverse method to measure complex, frequency-dependent dilatational and

shear wavespeeds that are present in thick, isotropic plates is developed in this report. After the

linear equations of motion of the system are derived from thick plate theory, the inverse method
is used to combine three transfer function measurements that yield closed-form values of the
complex, frequency-dependent Young’s and shear moduli and complex, frequency-dependent
Poisson’s ratio. Simulations are presented both with and without noise to show how the method

works and how the measurement error affects the analysis results.

A typical test configuration, as seen in figure 1, uses a speaker to project acoustic energy
onto the material. Intended for use when a plate is to undergo acoustic loading on its face, this

technique can be applied to automobile, building, and submarine materials.

SYSTEM MODEL

As described above, the experiment consists of insonifying a slab-shaped test specimen by
loading the structure on one entire side with an acoustic wave originating at the speaker. The
speaker (or projector) is located at such a distance from the material that the acoustic wave
nearly becomes a plane wave by the time it has established contact with the specimen. This
type of experiment — usually conducted at multiple frequencies and multiple insonification
angles — employs a frequency sweep (swept sine) at three different insonification angles for the
inverse method presented here. During insonification, transfer function data are collected from
both sides of the plate, either with accelerometers that measure accelerations or with laser

velocimeters that use reflected light to measure velocities. In the swept-sine mode, transfer
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Figure 1. Test Configuration to Insonify and Measure Material

functions of acceleration divided by acceleration or velocity divided by velocity will be equal to
displacement divided by displacement. Finally, the time domain data are Fourier transformed
into the frequency domain and then recorded as complex transfer functions, typically with a

spectrum analyzer.

The model and theoretical analysis are based on the following assumptions:

o the forcing function acting on the plate is a plane wave with definite

wavenumber and frequency content;




e the corresponding response of the plate is at a definite wavenumber and
frequency;

* motion is normal and tangential to the plate in one direction (two-
dimensional system);

e the plate has an infinite spatial extent; and

e the particle motion is linear.

The motion of the test specimen shown in figure 1 is governed by the equation

S*u

,uV2u+(/l+,u)VV0u=p0ﬂt2 , ey

where A and u are the complex Lamé constants (N/m?), pis the density (kg/m*), t is time (s)

b

e denotes a vector dot product, and u is the Cartesian coordinate displacement vector of the

material.

Figure 2 illustrates the coordinate system of the test configuration. Note that using this
orientation results in b = 0 and a having a value that is less than zero, with the thickness of the
specimen, A, exhibiting a positive value. Equation (1) is manipulated by writing the

displacement vector u as

u (x,y,z,t)
u=qu, (xy,z,0) ¢, @)
u.(x,y,z,t)

where x is the location along the plate (m), y is the location into the plate (m), and z is the
location normal to the plate (m), as shown in the figure. The symbol V is the gradient vector

differential operator written in three-dimensional Cartesian coordinates as

V=£i,+—‘?—iy+—i,, €)

ox Oy 4
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Figure 2. Coordinate System of the Test Configuration

with i, denoting the unit vector in the x-direction, i, denoting the unit vector in the y-direction,
and i, denoting the unit vector in the z-direction. The symbol V? is the three-dimensional

Laplace operator applied to vector u as

Vu=Vui + Vzuyiy +V%u_i, “)

and to scalar u as

Au A*u ou
Viu,,, =VeVuy,  =—7T24 T, B (5)
7 > ox oy oz

where the term V eu is the divergence and is equal to

o
Vou=au"+ e +0ﬂu2 .
ox Oy 0Oz

©6)




The displacement vector u is written as

u=Vg+Vxy ,

where @ is a dilatational scalar potential, x denotes a vector cross product, and y is an

equivoluminal vector potential expressed as

Wx(x’y’z3t)
Y=,z . ®
l//:(xaysz:t)

The problem is formulated as a two-dimensional system, and thus y =0, u (x,y,2,0)=0

9

and J()/0y =0. Expanding equation (7) and breaking the displacement vector into its

individual nonzero terms yields

Op(x,z,t) _ Y, (x,2,1)

,Z,t) = 9
u,(x,z,1) o > ®
and
z a ) ,Z,t
u,(x,z,t)=a¢(x’ ’t)+ ACED) . (10)
: oz Ox

Equations (9) and (10) are next inserted into equation (1), which results in

O P(x,z,1)
2V2(x,z,1) = =220 11
cd ¢(x ) atz ( )
and
Ay (x,z,t
V2 (x,z,1) = 2L BB (12)

ot?



where equation (11) corresponds to the dilatational component and equation (12) corresponds to

the shear component of the displacement field. Correspondingly, the constants ¢; and ¢, are the

complex dilatational and shear wavespeeds, respectively, and are determined by

¢, = A+2u (13)
\ »

and

c, = |£. (14)
p .

The relationship of the Lamé constants to the Young’s and shear moduli is shown as

PP (15)
(1+0)(1-20)
and
E
H=G= 7o)’ (16)

where E is the complex Young’s modulus (N/m?), G is the complex shear modulus (N/m”), and

vis the Poisson's ratio of the material (dimensionless).

The conditions of infinite length and steady-state response are now imposed, allowing the

scalar and vector potential to be written as

o(x,z,t) = O(z)exp(ikx) exp(iwt) 17
and

w, (x,z,1) =¥ (z)exp(ikx) exp(iom?), (18)




where i is the square root of —1, @ is the frequency (rad/s), and k is the wavenumber with respect

to the x-axis (rad/m). Inserting equation (17) into equation (11) yields

d*®(z)

e +a’®(z)=0, (19)
where
a=k}-k*, (20)
with
k=2 1)
cd

Inserting equation (18) into equation (12) yields

d*¥(z
——_d_z( ), BY(z)=0, (22)
where
p=k -k, (23)
with
k=2 4)
cS

The solution to equation (19) is

D(z) = A(k,w)exp(iaz)+ Bk, w)exp(-iaz) , 25)

and the solution to equation (22) is



Y(z) = C(k,w)exp(ifiz) + D(k,w)exp(-ifz) , (26)

where A(k,w), B(k,w), C(k,w),and D(k,w) are wave response coefficients that are

determined later in this section. Use of the expressions in equations (9) and (10) now allows the

displacements to be written as functions of the unknown constants as follows:

u, (x,z,1) = U, (k, z, w)exp(ikr)exp(ior)
= {ia|4(k, w)exp(iaz) - B(k, w)exp(-iaz)] (27)
+ik[C(k, w) exp(ifz) + D(k, w) exp(-if3z)] }exp(ikx) exp(iowt)
and
u (x,2,1) = U, (k, z,0)exp(ikx)exp(ict)
= {ik[A(k, w)exp(iaz) + Bk, w)exp(-iaz)] (28)

-if [C (k,w)exp(ifz) — D(k, ) exp(—iﬂz)] }exp(ikx) exp(iot) .

The normal stress at the top of the plate (z = b) is equal to the opposite of the pressure load

created by the projector that acts on the plate surface and is expressed as

rzz(x,b,t)z(/l_{_zlu) 5uz(a'x,b,t)+lﬁuxgx,b,t) -
z X

_po(xabat) 5 (29)

the tangential stress at the top of the plate is zero and is written as

Ou,(x,b,0)  Su, (x,b,t)} 0. (30)

,b,t) =
Z.(x )u[ P ox

The normal stress at the bottom of the plate (z = a) is equal to zero, yielding




ou_(x,a,t) +/1 ou (x,a,t)

- (x,a,t)=(1+2
7..(x,a,0) = (A+2u) o ox

0,

and the tangential stress at the bottom of the plate is zero, resulting in

(32)

a,(x,a,o:ﬂ[(’"xg;a’tnauzg;a,»}=0

The applied load in equation (29) is an acoustic pressure that is modeled as a function at

definite wavenumber and frequency and is expressed as
DPo(x,2,1) = Py(w)exp(ikx) exp(iot) , 33)

where the wavenumber £ is found using

k=2sin@) , (34)
¢

in which ¢, is the compressional wavespeed of air (m/s) and 6 is the angle of incidence of the

projector with the z-axis (rad).

Assembling equations (1)-(34) and letting 5 = 0 yields the following four-by-four system of

linear equations that models the structure:
Ax=b (35)
where the entries of equation (35) are

Ay=-a’A-2a%u—-Ak? (36)

A1z = An s 37

10



A, =2kfu

A, =4, ,

Ay =2uka ,

A, =-4, ,

Ay = pfp? - pk?
A,y =4, ,

A, = A, exp(iaa) ,
A, = A, exp(-iaa) ,
A, =—Aexp(ifa) ,
A, = A exp(—ifa) ,
A,=4, exp(iaa) ,
A, =-4, exp(-iaa) ,
A, = Ayexp(ifa) ,
A, = A, exp(-ifa) ,

b, =-F(o) ,

(3%

(39

(40)

(1)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

G

(52)

(33)

(%)

(53)

11




From equations (35)-(55), the solution to the constants A(k,), B(k,w), C(k,w), and D(k, )

can be calculated at each specific wavenumber and frequency from
x=A"b. (56)

Once these solutions are known, the transfer function between the wall motion in the z-direction
at z = g and the wall motion in the z-direction at z = b is written in closed-form notation from

equations (27) and (56) as

U.(k,a,0) 4ok’ sin(ah) + (S - k?)? sin(fh)

O o)~ i sin(arh)cos(Bh)+ (B ~k*)’ cos(ah)sin(Bh)

(57

The expression in equation (57) will first be used in the inverse method to estimate « and then to

estimate £, both of which will ultimately be employed to calculate the mechanical properties of

the material. This process is further described in the following sections.

INVERSE MODEL AT ZERO WAVENUMBER

The first step in the inverse process solves for the response at zero wavenumber (typically
referred to as the broadside response) to determine the dilatational wavespeed. At zero
wavenumber, the angle between the propagation direction of the insonification energy and the
z-axis is zero and the response of the structure to broadside energy is comprised entirely of
dilatational waves (i.e., no shear waves are excited at zero wavenumber). Moreover, the transfer

function given in equation (57) reduces to

1
cos(a,h) -

T0,0)= T 1 , (58)
Rl
where T, (or R)) represents the data from the experiment with an insonification angle of zero

(typically a frequency-dependent, complex number) and the subscript 1 denotes the first

12



experiment. Equation (58) can be expanded into real and imaginary parts and solved, resulting

in a value for ¢, at every frequency for which a measurement is made. The solution to the real

part of o, is

1 Arccos(s) + LLIp—
2h 2h
Re(a,) = ; (39)

1 Arccos(—s) + 2%y odd
2h 2h

where

2
s =[Re(R)P +[Im(®) ~{[Re(R) + [Im(R)F*}" - {2[Re(R)P* - 2[Im(R)I* -1} ,
(60)
n is a non-negative integer, and capital A denotes the principal value of the inverse cosine
function. The value of 7 is determined from the function s, which is a periodically varying

cosine function with respect to frequency. At zero frequency, nis 0. Every time s cycles

through 7 radians (180°), n is increased by 1. When the solution to the real part of ¢, is found,

the solution to the imaginary part of «, is written as

Re(R)  Im(R) } 61)

Im(a,) = l10
1) =708 cos[Re(a;)h] sin[Re(a,)h]

h

The real and imaginary parts of ¢, from equations (59) and (61), respectively, are combined to
yield the complex wavenumber. Because this measurement is made at zero wavenumber

(k=0), a, is equal to the dilatational wavenumber. Thus, the dilatational wavespeed is

expressed as

a

¢, = _ . (62)
[Re(a,) +ilm(z,)]

13




To solve for the shear wavespeed, the specimen must be excited at a nonzero wavenumber as

shown in the next section.

INVERSE MODEL AT NONZERO WAVENUMBER

The next step solves for the response at nonzero wavenumber to determine the shear
wavespeed. The transfer function at the nonzero wavenumber is given in equation (57) and can

be expressed for the nonzero angle of insonification as

Tk, ) = 40, Byk; sin(a,h) + (B} - k3)” sin(B,h) _
" 4a, ok sin(ayh)cos(B,h) + (B2 - k2) cos(ayh)sin(B,h)

T, = (63)

1
R,’

where T, (or R,) represents the data from the experiment at the nonzero insonification angle
(typically a frequency-dependent, complex number) and the subscript 2 denotes the second
experiment. It is noted that «, in equation (63) is different from @, in equation (58), with this
difference based on the k2 term shown in equation (20), where the wavenumber ¢ is defined.
Due to the complexity of equation (63), there is no simple method for rewriting the equation as
a function of f,, which is the variable that is to be estimated. Rather, equation (63) is

rewritten as

f(B,) =0=4a, B,k sin(a,h)[cos(B,h) - R, 1+ (B; ~ k2)? sin(B,h)[cos(a,h) ~ R, ] ,
(64)

where the problem now becomes finding the zeros of the right-hand side of equation (64) or, in
the presence of actual data that contain noise, finding the relative minima of the right-hand side
of this equation, with the purpose of determining which relative minimum corresponds to shear
wave propagation and which relative minima are extraneous. Because equation (64) has a
number of relative minima, zero-finding algorithms are not applied to this function, as they
typically do not find all the minima locations and are highly dependent on initial guesses. The

best method for locating all the minima is to plot the absolute value of the right-hand side of

14



equation (64) as a surface, with the real part of £, on one axis and the imaginary part of £, on

the other axis. The value «, is determined from

a, =K =k} =\ K} , (65)

so that equation (64) is a function of only (complex) £,. Once this function is plotted, the
minima can be easily identified and the corresponding value of (/£,),, at the location of the

minima can be determined by examination of the minimum location — an approach that is
sometimes referred to as the grid method. The shear wavenumber(s) and wavespeed(s) are then

determined from

k) = BIm + s (66)

and

€)m =% : (67)

where the subscript m denotes each minima value that was found by inspecting the surface
formed from equation (64). Determination of the correct index of m that corresponds to shear

wave propagation is presented in the next section.

DETERMINATION OF PROPERTIES FROM WAVESPEEDS

The process of determining the material properties from the wavespeeds begins with

calculation of the Lamé constants from equations (13) and (14), which is expressed as

H, = pe,)n (68)
and

A = P =2p(c,) - (69)

15




To determine the correct index m that corresponds to the actual wave propagation rather than to
an extraneous solution, a third set of measurements is made at a nonzero incidence angle that is
not equal to the angle used in the previous section. That is, the model in equation (63) is
calculated from the estimated material properties, with a residual value established from this

third set of measurements. Each m-indexed residual at a specific frequency is defined as

) = 405(B;) . k3 sin(ash) +[(B;)2 — k2T sin[(B,), K] 1
T 4ay(B,),, K sin(ash)cos[(B,), h+[(B,)}, — k2T cos(a, hysin[( ) ] Ry’
(70)
where
@y =k} -k} =\Jal -k 1)
and
Bs)m =(B)2 + K2 -k, (72)

with the subscript 3 denoting the third experiment. The smallest residual value corresponds to
the correct value of index m and the correct values of the Lamé constants. Poisson’s ratio is then

calculated using

v= A . (73)
2(p+A)
Young’s modulus can be calculated from
E- 2u2u+32) , (74)
2(u+2)
and the shear modulus from
G=yu. (75)

16



NUMERICAL SIMULATION

The inverse measurement method presented here can be simulated by means of a numerical
example that uses a soft rubberlike material with the following properties: Young’s modulus E of
[(1e8-i2e7)+ (5e3 f —i3e2f)] N/m?>, where f is frequency in Hertz; Poisson’s ratio v equal to
0.40 (dimensionless); density p equal to 1200 kg/m*; and thickness % of 0.1 m. A compressional
(acoustic) wave velocity of ¢, = 343 m/s for air was used. All other parameters can be calculated

from these values.

Insonification angles of 0°, 20°, and 40° are chosen to illustrate the technique, with three
different amounts of additive noise used during the simulation: no additive noise, 1% additive
noise, and 2% additive noise. Additive noise is included in the transfer function using the

equation

T,(@) = T(@) + e{Re[T ()]0, +im[T ()]0, } , (76)

where e is the amount of additive noise added to the transfer function and o, and &, are random
numbers with zero mean and a variance of one. The value e is also called the transfer function

error value, and it represents the deviation of the transfer function from perfect data.

Figure 3 is a plot of the transfer functions of equation (57) at 0°, 20°, and 40° insonification
angles versus frequency. The top plot illustrates the magnitude and the bottom plot presents the
phase angle. Although the transfer functions shown are without additive noise, the transfer
functions with additive noise were similar to those seen in this figure. Once the transfer
functions are known (typically by measurement, but, in this report, by numerical simulation), the

dilatational wavespeed can be estimated from equations (59)62).

Figure 4 is a plot of the function s versus frequency without additive noise, and figure 5
illustrates the actual dilatational wavespeed and the estimated dilatational wavespeed without
additive noise, with 1% additive noise, and with 2% additive noise versus frequency. The
top plot is the real component and the bottom plot is the imaginary component of the

wavespeed.

17
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Figure 5. Actual and Estimated Dilatational Wavespeed Versus Frequency



Figure 6 plots the absolute value of the magnitude of the surface defined in equation (64)
versus the real and imaginary components of f, at 1800 Hz without additive noise. The surface,
discretized with 400 by 400 points, has its magnitude expressed in a decibel scale. Seven distinct
local minima exist, with the first local minimum corresponding to B, =0, whichis a value that
implies no shear wave propagation (a physically unrealizable condition at nonzero wavenumber).
The other six local minima are labeled on the figure with bold numbers and are processed at a

third measurement location according to equation (70).

The results for no additive noise are provided in table 1. As is evident, local minimum
number 3 has the smallest residual value and corresponds to the shear wave propagation. The
value for (8,), is equal to 60.9 + 5.9i compared to the actual value of B, whichis 61.0 + 5.9i.
The small difference between these two values can be attributed to the discretization of the
surface as shown in the figure. Additionally, it is noted that the local minima numbered 4, 5, and
6 have an imaginary value almost equal to zero, which would correspond to a loss factor of zero.
Most soft materials have moderate to large loss values, which means that these minima could be
disregarded based on this criterion. The variable 3, at 1800 Hz was next estimated using 1%
and 2% additive noise, as shown in tables 2 and 3, respectively. These results illustrate that the

residual method is effective when noise is present in the data.

Figure 7 is a plot of the actual shear wavespeed and the estimated shear wavespeed without
additive noise, with 1% additive noise, and with 2% additive noise versus frequency. The top
plot presents the real component and the bottom part shows the imaginary component of the
wavespeed. The figure was constructed by repeating the measurement process shown in figure 6

at each specified frequency.

Figure 8 plots the actual shear modulus and the estimated shear modulus without additive
noise, with 1% additive noise, and with 2% additive noise versus frequency. The top plot

represents the real component and the bottom part shows the loss factor of the shear modulus.

Figure 9 is a plot of the actual Young’s modulus and the estimated Young’s modulus
without additive noise, with 1% additive noise, and with 2% additive noise versus frequency.
The top plot is the real component and the bottom part is the loss factor of the Young’s

modulus.
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Figure 6. Magnitude of Surface Versus Real and Imaginary 3, at 1800 Hz

Table 1. Values of (B,),, and (¢,), atthe Local Minima
Without Additive Noise

Local Minima Value of Residual (s,),,
Number m (5,),, (Equation (70))

1 22.1+5.2i 0.302

2 38.4+2.5i 2.006

3 60.9 + 5.9i 0.001

4 94.3 +0.5i 0.506

5 125.1 + 0.6i 0.335

6 157.4 + 0.5i 0.378




Table 2. Values of (f3,),, and (¢;),, at the Local Minima

with 1% Additive Noise

Local Minima Value of Residual (s,),,
Number m (5,5),, (Equation (70))

1 22.1+5.2i 0.275

2 39.3 +2.2i 2.170

3 60.9 + 6.3i 0.045

4 94.3 + 0.51 0.516

125.0 + 0.61 0.312

6 157.4 + 0.54 0.371

Table 3. Values of (f3,),, and (&,),, at the Local Minima

with 2% Additive Noise

Local Minima Value of Residual (s,),,
Number m B, (Equation (70))

1 22.1+5.3i 0.344

2 384 +2.7i 1.979

3 60.9 + 5.2i 0.009

4 94.3 +0.5i 0.519

5 125.0 +0.5i 0.361

6 157.4 + 0.51 0.398
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Figure 10 illustrates the actual real Poisson’s ratio and the estimated real Poisson’s ratio
without additive noise, with 1% additive noise, and with 2% additive noise versus
frequency. Because the numerical example is formulated using a Poisson’s ratio that is
strictly real, no imaginary component is shown in this plot. Imaginary values of Poisson’s

ratio are possible and have been shown to theoretically exist.!’

Finally, the additive noise versus the parameter estimation error is shown in table 4.

Parameter estimation error was computed from

1 N

Kost (a)n)_Kact(a)n)
8=-—
N ; |Kact (a)n )l

, 7

where @ is the parameter estimation error, «,,(®,) is the estimated value of the parameter at
the nth frequency value, x,,(@,) is the actual value of the parameter at the nth frequency
value, and N is the total number of frequencies at which an estimate was computed. It is noted
that at very low frequencies the routine did not produce a realistic estimate of the parameters,

and thus these estimates are not included in the table.

Table 4 shows that all the parameters are being estimated accurately with the inverse
technique. At 1% additive noise, the maximum error in the wavespeeds is 2.6% and the
maximum error of the material properties is 5.1%. At 2% additive noise, the maximum error in
the wavespeeds is 3.4% and the maximum error of the material properties is 6.8%. Poisson’s
ratio has a parameter estimation error of 1.4% when the transfer functions have 2% additive

noise, which is remarkably low for a parameter that is historically very difficult to measure.
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Table 4. Additive Noise Versus Parameter Estimation Error

Parameter
Parameter Additive Noise Estimation Error

¢4 0 ~0

cq 0.010 0.014
cq 0.020 0.016
s 0 0.004
Cs 0.010 0.026
g 0.020 0.034
G 0 0.007
G 0.010 0.051
G 0.020 0.068
E 0 0.007
E 0.010 0.047
E 0.020 0.063
v 0 0.002
v 0.010 0.010
v 0.020 0.014
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CONCLUSIONS

In this report, a theoretical method for estimating the mechanical properties of slab-shaped

materials subjected to insonification has been derived. Measurement of the transfer functions of

acceleration across the plate at three different insonification angles shows that the dilatational

wavespeed, shear wavespeed, Young’s modulus, shear modulus, and Poisson’s ratio can be

accurately determined. Moreover, the technique is relatively immune to noise mechanisms that

are sometimes present in the measurements.

It is recommended that actual measurement data be used to evaluate the effectiveness of the

inverse method.
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